Выполнение курсовых работ по электротехнике

Физика
Примеры решения задач
Закон сохранения импульса
Работа и энергия
Элементы механики жидкостей
Основы термодинамики
Твердые тела. Моно- и поликристаллы
Поляризация диэлектриков
Электрические токи в металлах, вакууме
и газах
Магнитные поля соленоида и тороида
Механические и электромагнитные
колебания
Упругие волны Волновые процессы
Элементы электронной оптики
Оптическая пирометрия
Элементы квантовой механики
Элементы квантовой статистики
Фотопроводимость полупроводников
Ядерные реакции и их основные типы
Математика
Аналитическая геометрия
Контрольная
Метод Гаусса
Матричный метод
Функции
Схема вычисления производной
Понятие дифференциала функции
Сходимость ряда
Теория вероятности и математической
статистики
Дифференциальные уравнения
Найти интервалы выпуклости и
точки перегиба функции
Лабораторные работы
Электроника
Исследование полевых транзисторов
Полупроводниковый стабилизатор
ВАХ туннельного диода
Исследование биполярных транзисторов
Входное  сопротивление полевого
транзистора
Упрощенная структура МДП–транзистора
Полупроводниковые выпрямители
Двухполупериодный мостовой выпрямитель
Электронный усилитель на транзисторах
Режим работы усилительных каскадов
Управляемые тиристорные выпрямители
Операционный инвертирующий усилитель
Фотоэлектрические преобразователи
Полупроводники
Зонная структура полупроводнков
Примеси в полупроводниках.
Токи в полупроводниках
Эффект Фарадея
Типы фотодатчиков
Люксметр Ю116
Сглаживающие фильтры
Описание лабораторной установки
Методика проведения исследований
Исследование метрологических
характеристик
Основные характеристики тензорезисторов
Конструкция датчика
Измерительные преобразователи
Исследование полупроводниковых
выпрямительных диодов
Структурная схема тензометрической
установки для измерения усилий
Исследование стабилитронов
Исследование варикапов
Сопромат
Практические работы по
метериаловедению
Инженерная графика
Сборочный чертеж и спецификация
Обозначение материалов
Построение лекальных кривых

Правила нанесения размеров

Геометрические построения
Позиционные задачи
История искусства
Французский стиль в русской архитектуре
Романский стиль
Искусство Барокко
Средневековая готика
Архитектура русского классицизма
Художественная роспись тканей
Японские мотивы в тканях модерна
Холодный батик
Техническое обслуживание ПК
Видеоплаты
Стандарт SVGA
Последовательные порты
Факсимильная технология
Сетевые адаптеры
Сети Ethernet
Кабели для локальных сетей
Компьютерные сети
Технология «клиент-сервер» 
Структура Web-сайта
Платформа для Web-приложений

 

Расчет выпрямителей, работающих на нагрузку с емкостной реакцией. Аналитические формулы получим на примере однотактного трехфазного выпрямителя, схема которого и временные диаграммы,  поясняющие его работу

Расчет транформаторов малой мощности Трансформаторы малой мощности (ТММ) предназначены, в основном, для питания аппаратуры релейных схем, выпрямительных устройств, анодных цепей и цепей накала различных электронных приборов. Указанная нагрузка носит преобладающий активный характер, что учтено в данной методике

Методика расчёта линейных электрических цепей переменного тока

Метод узловых и контурных уравнений

Метод контурных токов Намечаем в независимых контурах заданной цепи, как показано на рисунке 3.4, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа

Метод законов Кирхгофа 1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю (). 2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произвольном контуре схемы равна алгебраической сумме ЭДС ().

Метод контурных токов Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m-(n-1).

Метод узловых потенциалов Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n-1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n-1).

Метод двух узлов является частным случаем метода узловых потенциалов при числе узлов в схеме n = 2

Расчет методом эквивалентного генератора В соответствии с заданием рассчитаем ток в пятой ветви. Крайние точки в пятой ветви обозначим буквами «а» и «b». Удаляем из электрической цепи пятую ветвь вместе с источником тока, подсоединенного параллельно ей.

Расчёт трёхфазной цепи при соединении приемника в звезду При расчёте несимметричной трехфазной цепи с потребителем, сое­динённым в звезду, схема может быть без нулевого провода или с нулевым проводом, который имеет комплексное сопротивление ZN. В обоих случаях система линейных и фазных напряжений генератора симметричны. Система линейных напряжений нагрузки останется также симметричной, так как линейные провода не обладают сопротивлением. Но система фазных напряжений нагрузки несимметрична из-за наличия напряжения смещения ней­трали UN. Трехфазная цепь при соединении приёмника в звезду представляет собой цепь с двумя узлами, расчёт подобных цепей наиболее целесообразно вести методом узлового напряжения

Активные и реактивные составляющие токов и напряжений При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.

Мощность трехфазной цепи и способы ее измерения Активная и реактивная мощности трехфазной цепи, как для любой сложной цепи, равны суммам соответствующих мощностей отдельных фаз

Уравнения Ома и Кирхгофа в матричной форме Если в исследуемой сложной схеме содержатся параллельно включенные ветви, то для составления матриц соединений такие ветви необходимо  заменить (объединить) одной эквивалентной ветвью.