Молекулярная физика и термодинамика ЭлектроникаЭлектротехника Контрольная по математике

Выполнение курсовых работ по электротехнике

Активные и реактивные составляющие токов и напряжений

При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.

Пусть некоторый приемник энергии носит в целом активно-индуктивный характер (например, электродвигатель). Такой приемник может быть представлен двумя простейшими схемами замещения, состоящими из 2-х схемных элементов R и L: а) последовательной (рис. 51а) и б) параллельной (рис. 51б): Выражения для коэффициентов ряда позволяют получить разложение в ряд любой периодической функции, однако для большинства таких функций, которые используются в теории электрических цепей, эти разложения уже получены и могут быть взяты в соответствующей справочной литературе.

 


Обе схемы будут эквивалентны друг другу при условии равенства параметров режима на входе: , .

Максимум мощности приемника имеет место при равенстве активных сопротивлений приемника и источника

Резонанс в электрических цепях Определение резонанса В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки  и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов

Резонанс в сложных схемах Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

Электрические цепи трехфазного тока. Трехфазная системаь Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .

Достоинства трехфазной системы: Передача энергии от генератора к потребителям трехфазным током наиболее выгодна экономически, чем при любом другом числе фаз. Например, по сравнению с двухпроводной системой достигается экономия проводов в два раза (3 провода вместо 6), соответственно уменьшаются потери энергии в проводах линии.

Способы соединения фаз трехфазных приемников. Приемники трехфазного тока могут подключаться к генератору по двум схемам – звезды () и треугольника (). Как известно, на выходе трехфазного генератора получаются два напряжение (линейное и фазное), отличающиеся в Uл/Uф = раз. С другой стороны каждый приёмник энергии рассчитан на работу при определенном напряжении, которое называется номинальным. Схема соединения фаз приемника должна обеспечить подключение его фаз номинальное фазное напряжение. Таким образом, выбор схемы соединения фаз трехфазного приемника зависит от соотношения номинальных напряжений приемника и генератора (сети).

Схема треугольника применяется в том случае, если номинальное фазное напряжение приемника соответствует (равно) линейному напряжению генератора. При соединении в треугольник конец каждой фазы соединяется с началом последующей, а точки соединения (вершины треугольника) подключаются к линейным выводам трехфазного генератора  А, В, С линейными проводами

Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов). Наиболее рациональным методом расчета таких трехфазных цепей является метод узловых потенциалов, при этом составление уравнений и их решение производится в матричной форме.

Для последовательной схемы (рис. 51а) справедливы соотношения:

,

.

Для параллельной схемы (рис. 51б) справедливы соотношения:

,

.

Сравнивая правые части уравнений для U и I, получим соотношения между параметрами эквивалентных схем:

, .

Из анализа полученных уравнений следует сделать вывод, что в общем случае  и  и соответственно  и , как это имеет место для цепей постоянного тока.

Математически любой вектор можно представить состоящим из суммы нескольких векторов или составляющих.

Последовательной схеме замещения соответствует представление вектора напряжения в виде суммы двух составляющих: активной составляющей Uа, совпадающей с вектором тока I, и реактивной составляющей Uр, перпендикулярной к вектору тока (рис. 52а):

 


Из геометрии рис. 52а следуют соотношения: . Треугольник, составленный из векторов , ,  получил название треугольника напряжений.

Если стороны треугольника напряжений разделить на ток I, то получится новый треугольник, подобный исходному, но сторонами которого являются полное сопротивление Z, активное сопротивление R и реактивное сопротивление X. Треугольник со сторонами Z, R, X называется треугольником сопротивлений (рис. 52б). Из треугольника сопротивлений следуют соотношения: R=Z×cosφ, X=Z×sinφ, , .

Параллельной схеме замещения соответствует представление вектора тока в виде суммы двух составляющих: активной составляющей Iа, совпадающей с вектором напряжения U, и реактивной составляющей Iр, перпендикулярной к вектору U (рис. 53а):

 


Из геометрии рисунка следуют соотношения:

.

Треугольник, составленный из векторов    получил название треугольника токов.

Если стороны треугольника токов разделить на напряжение U, то получится новый треугольник, подобный исходному, но сторонами которого являются проводимости: полная – Y, активная - G, реактивная – B (рис. 53б). Треугольник со сторонами Y, G, B называется треугольником проводимостей. Из треугольника проводимостей следуют соотношения:

.

Разложение напряжений и токов на активные и реактивные составляющие является математическим приемом и применяется на практике для расчета несложных цепей переменного тока.

10. Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику)

Двухполюсником называется устройство или часть схемы (цепи) с двумя выводами (полюсами). Если внутри двухполюсника содержатся источники энергии, то он называется активным (A), в противном случае – пассивным (П).

Энергетические характеристики передачи энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику) на переменном токе зависят от соотношения параметров приемника и источника между собой (рис. 54)

 



По закону Ома ток в схеме равен:

 .

Активная мощность приемника:

.

Активная мощность источника: PE=E×I.

При постоянных параметрах источника энергии активная мощность приемника зависит от его параметров: . Исследуем эту функцию на максимум при изменении отдельных параметров.

Условие первое: X2 = var, R2=const:

  или .

Максимум мощности приемника  имеет место при условии равенства реактивных сопротивлений приемника и источника по модулю и противоположности их по знаку, например, если реактивное сопротивление источника носит индуктивный характер, то реактивное сопротивление приемника должно быть емкостным, и наоборот.

Условие второе: R2 = var, X2 = const.

 или .


На главную