Контрольная по математике

Формула Тейлора для ФНП записывается в дифференциальной форме по аналогии с формулой Тейлора для функции одной переменной:

Здесь  – дифференциал -го порядка функции  в точке , его можно записать в операторной форме

,

где  – фиксированная точка; , , ,  – имеют
постоянные значения. Через   обозначен остаточный член

формулы Тейлора; существуют различные формы записи для , например,  – бесконечно малая при  функция более высокого порядка малости,
чем .

Дифференцируемость ФНП

Теорема о существовании всех частных производных ФНП

Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Теорема о достаточных условиях дифференцируемости ФНП в точке

Дифференциалы высших порядков ФНП Пусть в области , , задана произвольная ФНП , , имеющая непрерывные частные производные первого порядка.

Для  вычислить  и , где  и , ,  – произвольные постоянные числа.

Формула Тейлора позволяет вычислять приближенно значение функции с любой наперед заданной точностью. Погрешность может быть установлена с помощью оценки остаточного члена.

Дифференцирование сложной ФНП Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений

Для функции двух переменных при  формула Тейлора имеет вид

,

где ;

;

, , .

ПРИМЕР 1. Разложить функцию  
в окрестности точки   по формуле Тейлора при .

Решение. Поскольку

,

то вычисляем ;

,

где ; ; ;

.

Окончательно получаем

 ,

где .

б) .

Решение. Интеграл  - несобственный интеграл 1-го рода. Имеем

.

Отсюда следует

Ответ: интеграл  расходится.

в) .

Решение. Интеграл  - несобственный интеграл 2-го рода, особая точка подынтегральной функции . Поэтому

.

Ответ: .