Контрольная по математике

Вычисление интеграла ФНП.

Типовые задачи

Вычисление площади плоской фигуры

а) Площадь фигуры в декартовых координатах

ПРИМЕР 5. Вычислить площадь фигуры, ограниченной линиями  и .

Решение. В п. 2.5 приведена формула для вычисления площади подобной фигуры. Проектируем фигуру (см. рисунок) на ось  и вычисляем

.

Итак, площадь фигуры .

ПРИМЕР 6. Вычислить площадь фигуры, ограниченной эллипсом .

Решение. Используем симметрию фигуры и вычислим площадь  части фигуры (в I квадранте):   Получаем

.

Итак, площадь эллипса .

Задача 12. Вычислить

а) .

Решение. Пусть . Очевидно, что , Поэтому несобственный интеграл 1-го рода  расходится. Вычислим . Имеем

.

Таким образом, мы получили

Ответ: .

б) .

Решение. Имеем

.

Таким образом, получаем

 Ответ:  не существует.

в) .

Решение. Особая точка . Очевидно, что несобственный интеграл 2-го рода  расходится, так как . Поэтому

.

Отсюда

Ответ: .