Физика
Геометрия
Математика
Курсовая
Конспекты
Контрольная
Информатика
Контрольная
Задачи
Инженерная графика
Сети
Типовики
Сопромат
Архитектура
Электроника
Карта

Контрольная по математике

Вычисление интеграла ФНП.

Типовые задачи

Вычисление площади плоской фигуры

б) Площадь плоской фигуры в полярных координатах

На плоскости можно рассмотреть полярную систему координат . Тогда точке  соответствуют координаты  и , предполагаем полуоси  и  () совпадающими; причем  положительное
направление угла   – против вращения часовой стрелки.

Фигура на плоскости, ограниченная лучами ,  () и кривой , , называется криволинейным сектором. Очевидно, при   имеет круговой сектор и его площадь . Поэтому если провести процедуру построения интегральной суммы  для разбиения , ,  и системы точек , то при , где , , придем к интегралу , который можно
интерпретировать как площадь криволинейного сектора.

Итак, если предел интегральной суммы, построенной по указанной процедуре, существует, то площадь криволинейного сектора можно вычислить по формуле

.

ПРИМЕР 7. Найти площадь фигуры, ограниченной лемнискатой
Бернулли  и окружностью  (внутри
окружности).

Решение. Лемниската существует при , т.е. для  или для ; периодически повторяется для . Симметрия кривой следует из четности функции . При , изменяющемся от  до , значение  убывает от  до , т.е. значение  убывает от  до  () (см. рисунок). Пересечение лемнискаты и окружности 

  имеем при  и по
симметрии при .

Для вычисления площади используем симметрию фигуры ;  – площадь фигуры в I квадранте. Фигура  – объединение двух криволинейных секторов и поэтому

.

Окончательно имеем .

Задача 13. Доказать неравенства.

а) .

Доказательство. Обозначим . Особая точка . Так как

, то интеграл  абсолютно сходится.

Пусть

. (40)

 Рассмотрим интеграл . Обозначим . Имеем

.  (41)

Докажем, что

.  (42)

Действительно, . Следовательно,  убывает на промежутке . А так как , то отсюда следует (42). (41) и (42) дают нам, что . Следовательно,

. (43)

Используя вторую из формул (43), получим . Итак,

.  (44)

Оценим интеграл . Имеем

,  (45)

Так как  (см. (40), то из неравенств (44) и (45) получаем

.  (46)

(Доказать, что неравенства (44) и (45) строгие).

Пусть теперь

.  (47)

Используя первую из формул (43), получим

.  (48)

Докажем, что

.  (49)

Интегрируя по частям, имеем

.  (50)

Далее

. (51)

Из (50) и (51) получим .

Неравенство (49) доказано. Из (47) - (49) следует

. (52)

Неравенства (46) и (52) дают

.

Замечание. Интегрируя по частям интеграл , можно получить более точную оценку интеграла .

б) .

Доказательство. Обозначим . Интеграл  является сходящимся несобственным интегралом (доказать). Имеем

. (53)

Очевидно, что . Отсюда

.  (54)

Далее . Тогда

.  (55)

Объединяя (53) - (55), получим

.  (56)

Замечание. Оценка (56) может быть улучшена.