Физика. Примеры решения задач контрольной работы

 Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Примеры решения задач по физике
Кинематика
Движение материальной точки
Основное уравнение динамики
Законы сохранения импульса и энергии
Динамика вращательного движения
Механические колебания
ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ
МОЛЕКУЛЯРНАЯ  ФИЗИКА
Механика
Молекулярная физика и термодинамика
Электричество
Электромагнетизм
Атомная и ядерная физика
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ
Термодинамические процессы
Описание теплопроводности
Теплоотдача в жидкостях и газах
Теплоотдача при фазовых переходах
Тепловое излучение
Теплообменные аппараты
  Кинематика поступательного движения
Электростатика

 

основное уравнение динамики

Уравнение движения материальной точки (второй закон Ньютона) в векторной форме:

При  уравнение примет вид

.

В этих уравнениях - геометрическая сумма сил, действующих на точку,  - импульс,  - масса,  - скорость и  - ускорение материальной точки.

примеры решения задач

Задача 1. Тело массой  кг движется по вертикальной стене. Сила  действует под углом a = 300 к вертикали. Коэффициент трения . Найти величину силы , если ускорение тела направлено вверх и равно a = 2 м/с2.


На тело действуют четыре силы: сила , сила тяжести , сила реакции опоры  и сила трения . Покажем эти силы на рисунке.

Запишем II закон Ньютона в виде

. (1)

Ось OY направим вертикально вверх, ось OX – перпендикулярно стене. В проекциях на оси координат уравнение (1) примет вид

OХ: , (2)

OY:  . (3)

Сила трения скольжения

. (4)

Используя (2) и (4), перепишем (3):

.

Отсюда

 Н.

Ответ:  Н.

Задача 2. В лифте, движущемся вертикально вверх с ускорением 0,2 м/с 2, вращается столик с угловой скоростью  рад/с. На столике лежит брусок, коэффициент трения равен 0,1. Найти максимальное расстояние между бруском и осью вращения, при котором он удерживается на столике. Принять g = 9,8 м/c 2, 


Брусок участвует в двух движениях одновременно: поступательно движется вверх с ускорением  и вращается вокруг неподвижной оси с центростремительным ускорением . Запишем II закон Ньютона для бруска:

, где .

Выберем оси координат OX и OY. В координатной форме основное уравнение движения примет вид

  (1)

  (2)

где an = w2 R, FTP = μN .

Из (2) N = m (a1 + g),

FTP = mm (a1 + g).

Перепишем (1):

mw2R =mm (a1 + g).

Получим, что

.

После подстановки данных и вычислений R = 0,1 м.

Ответ: R = 0,1 м.

Задача 3. С вертолёта, неподвижного висящего на некоторой высоте над поверхностью земли, сброшен груз массой m. Считая, что сила сопротивления воздуха изменяется пропорционально скорости (Fсопр = kV), определить, через какой промежуток времени ускорение груза a1 = g/2. Коэффициент сопротивления k = const.

Учитывая, что a = dV / dt , Fсопр= kV , получим дифференциальное уравнение первого порядка с разделяющимися переменными:

Проинтегрируем:

Получим:

Отсюда

.

В момент времени t = t1 ускорение a1 = g/2:

После логарифмирования:

.

Получим

.

Ответ: .

На главную