Физика. Конспекты лекций и примеры решения задач контрольной работы

Магнитные поля соленоида и тороида

Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l, имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, б) показывает, что внутри соленоида поле является однородным, вне соленоида — неоднородным и очень слабым.

На рис. 175 представлены линии магнитной индукции внутри и вне соленоида. Чем соленоид длиннее, тем меньше магнитная индукция вне его. Поэтому приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.

Для нахождения магнитной индукции В выберем замкнутый прямоугольный контур ABCDA, как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA, охватывающему все N витков, согласно (118.1), равна

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA. На участках АВ и CD контур перпендикулярен линиям магнитной индукции и Bl=0. На участке вне соленоида B=0. На участке DA циркуляция вектора В равна Вl (контур совпадает с линией магнитной индукции); следовательно,

  (119.1)

Из (119.1) приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):

  (119.2)

Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био — Савара — Лапласа; в результате получается та же формула (119.2).

Работа по перемещению проводника и контура с током в магнитном поле На проводник с током в магнитном поле действуют силы, определяемые законом Ампера. Если проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки, то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током.

Электромагнитная индукция Явление электромагнитной индукции (опыты Фарадея) В гл. 14 было показано, что электрические токи создают вокруг себя магнитное поле. Связь магнитного поля с током привела к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальная задача была блестяще решена в 1831 г. английским физиком М. Фарадеем, открывшим явление электромагнитной индукции. Оно заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.

Вращение рамки в магнитном поле Явление электромагнитной индукции применяется для преобразования механической энергии в энергию электрического тока. Для этой цели используются генераторы, принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле

Индуктивность контура. Самоиндукция Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара — Лапласа, пропорциональна току.

Трансформаторы Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электротехником П.Н. Яблочковым (1847—1894) и русским физиком И.Ф. Усагиным (1855—1919). Принципиальная схема трансформатора показана на рис. 186. Первичная и вторичная катушки (обмотки), имеющие соответственно N1 и N2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. , то в ней возникает переменный ток I1, создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сердечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. взаимной индукции, а в первичной — э.д.с. самоиндукции.

Магнитные свойства вещества Магнитные моменты электронов и атомов Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.

Намагниченность. Магнитное поле в веществе Подобно тому, как для количественного описания поляризации диэлектриков вводилась поляризованность, для количественного описания намагничения магнетиков вводят векторную величину — намагниченность, определяемую магнитным моментом единицы объема магнетика

Условия на границе раздела двух магнетиков Установим связь для векторов В и Н на границе раздела двух однородных магнетиков (магнитные проницаемости m1 и m2) при отсутствии на границе тока проводимости.

Природа ферромагнетизма Рассматривая магнитные свойства ферромагнетиков, мы не вскрывали физическую природу этого явления. Описательная теория ферромагнетизма была разработана французским физиком П. Вейссом (1865—1940). Последовательная количественная теория на основе квантовой механики развита Я. И. Френкелем и немецким физиком В. Гейзенбергом (1901—1976).

Основы теории Максвелла для электромагнитного поля Вихревое электрическое поле Из закона Фарадея (см. (123.2)) =–dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению электродвижущей силы индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение э.д.с. электромагнитной индукции возможно и в неподвижном контуре,находящемся в переменном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы — силы неэлектростатического происхождения

Уравнения Максвелла для электромагнитного поля Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.

Важное значение для практики имеет также магнитное поле тороида — кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.

Линии магнитной индукции в данном случае, как следует из соображений симметрии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r. Тогда, по теореме о циркуляции (118.1), B×2pr=m0NI, откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N — число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и B×2pr=0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

Поток вектора магнитной индукции. Теорема Гаусса для поля В

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная

  (120.1)

где Bn=В cos a —проекция вектора В на направление нормали к площадке dS (a — угол между векторами n и В), dS=dSn — вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cos a (определяется выбором положительного направления нормали n). Поток вектора В связывают с контуром, по которому течет ток. В таком случае положительное направление нормали к контуру нами уже определено (см. § 109): оно связывается с током правилом правого винта. Таким образом, магнитный поток, создаваемый контуром через поверхность, ограниченную им самим, всегда положителен.

Поток вектора магнитной индукции ФB через произвольную поверхность S равен

  (120.2)

Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Bn=B=const и

Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл×м2).

Теорема Гаусса для поля В: поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:

 (120.3)

Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Итак, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные выражения (см. (120.3), (81.2)).

В качестве примера рассчитаем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью m, согласно (119.2), равна

Магнитный поток сквозь один виток соленоида площадью S равен

а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,

  (120.4)

Закон Джоуля – Ленца.

К концу свободного пробега электрон приобретает дополнительную кинетическую энергию, среднее значение которой равно:

(Напомним: ).

Столкнувшись с атомом, электрон, по предположению, полностью передает приобретенную им энергию кристаллической решетке. Сообщенная решетке энергия идет на увеличение внутренней энергии металла, проявляясь в его нагревании.

Каждый электрон претерпевает за секунду в среднем  соударений. Обозначим число электронов проводимости в единице объема , тогда полная энергия, переданная электронами за единицу времени в единице объема будет равняться:

.

Зная, что  в результате получим закон Джоуля – Ленца в локальной форме:

Тепловая мощность, выделяющаяся в единице объема при протекании электрического тока пропорциональна квадрату напряженности поля.

Переходя от  и  к  и : (, ), получим , или

Получили другую форму закона Джоуля – Ленца. (Объемная плотность тепловой мощности равна произведению удельного сопротивления на квадрат плотности тока).


На главную