Физика. Конспекты лекций и примеры решения задач контрольной работы

Колебания и волны

Механические и электромагнитные колебания

Гармонические колебания и их характеристики

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и др. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. Например, единый подход к изучению механических и электромагнитных колебаний применялся английским физиком Д. У. Рэлеем (1842—1919), А. Г. Столетовым, русским инженером-экспериментатором П. Н. Лебедевым (1866—1912). Большой вклад в развитие теории колебаний внесли Л. И. Мандельштам (1879—1944) и его ученики.

Механические гармонические колебания Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат.

Свободные гармонические колебания в колебательном контуре Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.

Сложение гармонических колебаний одного направления и одинаковой частоты. Биения Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания Рассмотрим свободные затухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии

Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс Рассмотрим зависимость амплитуды А вынужденных колебаний от частоты w. Механические и электромагнитные колебания будем рассматривать одновременно, называя колеблющуюся величину либо смещением (х) колеблющегося тела из положения равновесия, либо зарядом (Q) конденсатора.

Переменный ток Установившиеся вынужденные электромагнитные колебания можно рассматривать как протекание в цепи, содержащей резистор, катушку индуктивности и конденсатор, переменного тока. Переменный ток можно считать квазистационарным, т. е. для него мгновенные значения силы тока во всех сечениях цепи практически одинаковы, так как их изменения происходят достаточно медленно, а электромагнитные возмущения распространяются по цепи со скоростью, равной скорости света. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытекающие из него правила Кирхгофа, которые будут использованы применительно к переменным токам (эти законы уже использовались при рассмотрении электромагнитных колебаний).

Резонанс напряжений Если в цепи переменного тока, содержащей последовательно включенные конденсатор, катушку индуктивности и резистор

Мощность, выделяемая в цепи переменного тока Мгновенное значение мощности переменного тока равно произведению мгновенных значений напряжения и силы тока

Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания — колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам: 1) колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; 2) различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний. Гармонические колебания величины s описываются уравнением типа

 (140.1)

где А — максимальное значение колеблющейся величины, называемое амплитудой колебания, w0 — круговая (циклическая) частота, j — начальная фаза колебания в момент времени t=0, (w0t+j) — фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до –1, то s может принимать значения от +А до –А.

Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени Т, называемый периодом колебания, за который фаза колебания получает приращение 2p, т. е.

откуда

  (140.2)

Величина, обратная периоду колебаний,

  (140.3)

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (140.2) и (140.3), получим

Единица частоты — герц (Гц): 1 Гц — частота периодического процесса, при которой за 1 с совершается один цикл процесса.

Запишем первую и вторую производные по времени от гармонически колеблющейся величины s:

  (140.4)

 (140.5)

т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин (140.4) и (140.5) соответственно равны Аw0 и Аw. Фаза величины (140.4) отличается от фазы величины (140.1) на p/2, а фаза величины (140.5) отличается от фазы величины (140.1) на p. Следовательно, в моменты времени, когда s=0, ds/dt приобретает наибольшие значения; когда же s достигает максимального отрицательного значения, то d2s/dt2 приобретает наибольшее положительное значение (рис. 198).

Из выражения (140.5) следует дифференциальное уравнение гармонических колебаний

  (140.6)

(где s = A cos (w0t+j)). Решением этого уравнения является выражение (140.1).

Гармонические колебания изображаются графически методом вращающегося вектора амплитуды, или методом векторных диаграмм. Для этого из произвольной точки О, выбранной на оси х, под углом j, равным начальной фазе колебания, откладывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания (рис. 199). Если этот вектор привести во вращение с угловой скоростью w0, равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения от –А до +А, а колеблющаяся величина будет изменяться со временем по закону s=A cos (w0t+j). Таким образом, гармоническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, отложенного из произвольной точки оси под углом j, равным начальной фазе, и вращающегося с угловой скоростью w0 вокруг этой точки.

В физике часто применяется другой метод, который отличается от метода вращающегося вектора амплитуды лишь по форме. В этом методе колеблющуюся величину представляют комплексным числом. Согласно формуле Эйлера, для комплексных чисел

  (140.7)

где  — мнимая единица. Поэтому уравнение гармонического колебания (140.1) можно записать в комплексной форме:

  (140.8)

Вещественная часть выражения (140.8)

представляет собой гармоническое колебание. Обозначение Re вещественной части условимся опускать и (140.8) будем записывать в виде

В теории колебаний принимается, что колеблющаяся величина s равна вещественной части комплексного выражения, стоящего в этом равенстве справа.

Релятивистская природа потенциального магнитного поля. Демонстрация релятивистской природы поперечной магнитной силы (Рис.5) предложена лауреатом нобелевской премии профессором Э. Парселлом [1].

 Пробный положительный заряд q ортогонально сближается с двумя однонаправленными токами зарядов i1, i2. Чёрные кружки обозначают положительные токовые заряды, движущие

ся вдоль указанного стрелками направления тока. А светлые – отрицательные, движущиеся в

противоположном направлении. Рассмотрение идёт в системе покоя пробного заряда. В таком

 i1 i2

 


 ∑V

 


  Поперечная магнитная сила

 

 


 ∑V


 q

  Продольная магнитная сила 

 

 Рис.6

случае наклонённые вектор суммарных скоростей ∑характеризуют как движение зарядов в проводнике, так и их сближение с покоящимся пробным зарядом (с наблюдателем).

 Наклонёнными оказываются и релятивистски «сплющенные» диаграммы силовых линий полей токовых зарядов.

 Суть парселловской идеи в следующем. Числа положительных и отрицательных зарядов в

токах одинаковые. В состоянии покоя заряды имеют электрические поля сферической формы

Поэтому суммарная сила притягивания и отталкивания между токовыми и пробным

зарядами равна нулю. При наличии сближения с пробным зарядом поля токовых зарядов претерпевают релятивистское преобразование («сплющивание»), что приводит к нарушению

силового баланса. В областях сгущений силовых линий воздействие каждого токового заряда

на пробный усиливается, а в областях разряжения - уменьшается. Общая релятивистская

составляющая силового воздействия при однонаправленных токах поперечна к скорости.

пробного заряда и подчиняется правилу левой руки.


На главную