Физика Электроника Сопромат Инженерная графика Испытание на сжатие Расчет на прочность Задачи курса сопротивление материалов Термическая обработка Металлургическое производство Электроалмазная обработка

Сопромат. Практические работы по метериаловедению

Термическая обработка металлов и сплавов. Дефекты термической обработки и  методы их предупреждения.

Виды термической обработки металлов и сплавов.

Превращения, протекающие в структуре стали при нагреве и охлаждении

Механизм основных превращений

Закономерности превращения.

Технологические возможности и особенности отжига, нормализации, закалки и отпуска

Основное оборудование  для термической обработки.

Термическая обработка легированных сталей.

 

Виды термической обработки металлов.

Термической обработкой называют совокупность  операций нагрева и охлаждения сплавов по определённому режиму с целью получения  требуемых структур и свойств сплавов.

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочара А.А., Курдюмова Г.В., Гуляева А.П..

Силы в червячном зацеплении. КПД

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура – время, см. рис. 12.1).

12_files/image001.gif

Рис.12.1. Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)

Различают следующие виды термической обработки:

1. Отжиг 1 рода – возможен для любых металлов и сплавов.

Его проведение не обусловлено фазовыми превращениями в твердом состоянии.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.

Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение

Разновидностями отжига первого рода являются:

диффузионный;

рекристаллизационный;

отжиг для снятия напряжения после ковки, сварки, литья.

2. Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.

Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)).

3. Закалка – проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).

Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)).

4. Отпуск – проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.

Характеризуется нагревом до температуры ниже критической А12_files/image002.gif (рис. 12.1 (3)). Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.

5. Старение – разновидность отпуска, провозится в закалённых легированных  сплавах при нормальной (естественное старение) или при повышенных температурах  (искусственное).

Термическую обработку подразделяют на предварительную и окончательную.

Предварительная – применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием).

Окончательная – формирует свойство готового изделия.

Превращения, протекающие в структуре стали при нагреве и охлаждении

Любая разновидность термической обработки состоит из комбинации четырех основных превращений, в основе которых лежат стремления системы к минимуму свободной энергии (рис 12.2).

12_files/image035.gif

Рис. 12.2. Зависимость свободной энергии структурных составляющих сталей от температуры: аустенита (FA), мартенсита (FM), перлита (FП)

1. Превращение перлита в аустенит 12_files/image003.gif, происходит при нагреве выше критической температуры А1, минимальной свободной энергией обладает аустенит.

12_files/image004.gif

2. Превращение аустенита в перлит12_files/image005.gif, происходит при охлаждении ниже А1, минимальной свободной энергией обладает перлит:

12_files/image006.gif

3. Превращение аустенита в мартенсит12_files/image007.gif, происходит при быстром охлаждении ниже температуры нестабильного равновесия

12_files/image008.gif

4. Превращение мартенсита в перлит 12_files/image009.gif; – происходит при любых температурах, т.к. свободная энергия мартенсита больше, чем свободная энергия перлита.

12_files/image010.gif

 

Механизм основных превращений

1) Превращение перлита в аустенит

Превращение основано на диффузии углерода, сопровождается полиморфным превращением 12_files/image011.gif, а так же растворением цементита в аустените.

Для исследования процессов строят диаграммы изотермического образования аустенита (рис.12.3). Для этого образцы нагревают до температуры выше 12_files/image012.gifи выдерживают, фиксируя начало и конец превращения.

12_files/image013.gif

Рис. 12.3. Диаграмма изотермического образования аустенита: 1 - начало образования аустенита; 2 - конец преобразования перлита в аустенит; 3 - полное растворение цементита.

С увеличением перегрева и скорости нагрева продолжительность превращения сокращается.

Механизм превращения представлен на рис.12.4.

12_files/image014.gif

Рис. 12.4. Механизм превращения перлита в аустенит.

Превращение начинаются с зарождения центров аустенитных зерен на поверхности раздела феррит – цементит, кристаллическая решетка 12_files/image015.gifперестраивается в решетку 12_files/image016.gif.

Время превращения зависит от температуры, так как с увеличением степени перегрева уменьшается размер критического зародыша аустенита, увеличиваются скорость возникновения зародышей и скорость их роста

Образующиеся зерна аустенита имеют вначале такую же концентрацию углерода, как и феррит. Затем в аустените начинает растворяться вторая фаза перлита – цементит, следовательно, концентрация углерода увеличивается. Превращение 12_files/image017.gifв 12_files/image018.gifидет быстрее. После того, как весь цементит растворится, аустенит неоднороден по химическому составу: там, где находились пластинки цементита концентрация углерода более высокая. Для завершения процесса перераспределения углерода в аустените требуется дополнительный нагрев или выдержка.

Величина образовавшегося зерна аустенита оказывает влияние на свойства стали.

Рост зерна аустенита. Образующиеся зерна аустенита получаются мелкими (начальное зерно). При повышении температуры или выдержке происходит рост зерна аустенита. Движущей силой роста является разность свободных энергий мелкозернистой (большая энергия) и крупнозернистой (малая энергия) структуры аустенита.

Стали различают по склонности к росту зерна аустенита. Если зерно аустенита начинает быстро расти даже при незначительном нагреве выше температуры12_files/image019.gif, то сталь наследственно крупнозернистая. Если зерно растет только при большом перегреве, то сталь наследственно мелкозернистая.

Склонность к росту аустенитного зерна является плавочной характеристикой. Стали одной марки, но разных плавок могут различаться, так как содержат неодинаковое количество неметаллических включений, которые затрудняют рост аустенитного зерна.

Ванадий, титан, молибден, вольфрам, алюминий – уменьшают склонность к росту зерна аустенита, а марганец и фосфор – увеличивают ее.

Заэвтектоидные стали менее склонны к росту зерна.

При последующем охлаждении зерна аустенита не измельчаются. Это следует учитывать при назначении режимов термической обработки, так как от размера зерна зависят механические свойства. Крупное зерно снижает сопротивление отрыву, ударную вязкость, повышает порог хладноломкости.

Различают величину зерна наследственного и действительного.

Для определения величины наследственного зерна, образцы нагревают до 930o С и затем определяют размер зерна.

Действительная величина зерна – размер зерна при обычных температурах. полученный после той или иной термической обработки.

__________________________________________________________________

Неправильный режим нагрева может привести либо к перегреву, либо к пережогу стали, также наблюдается  окисление и обезуглероживание поверхностного слоя деталей.

Перегрев.

  Нагрев доэвтектоидной стали значительно выше температуры 12_files/image020.gifприводит к интенсивному росту зерна аустенита. При охлаждении феррит выделяется в виде пластинчатых или игольчатых кристаллов. Такая структура называется видманштеттовая структура и характеризуется пониженными механическими свойствами. Перегрев можно исправить повторным нагревом до оптимальных температур с последующим медленным охлаждением.

Пережог

 имеет место, когда температура нагрева приближается к температуре плавления. При этом наблюдается окисление границ зерен, что резко снижает прочность стали. Излом такой стали камневидный. Пережог – неисправимый брак.

Окисление

 поверхности стали характеризуется  появлением на изделии значительного слоя окалины.

При обезуглероживании

  происходит выгорание в поверхностных слоях углерода, что приводит к понижению  твёрдости после закалки. Окисление и обезуглероживание являются следствием наличия  в печи окислительной атмосферы. Для предупреждения этих дефектов нагрев следует  вести в печах с восстановительной или нейтральной атмосферой (углекислый газ,  окись углерода, азот, водород, метан, другие газы в различных сочетаниях) или  соляных ваннах. При наличии достаточного припуска окисленный и обезуглероженный  слой удаляют механической обработкой. В противном случае дефекты неисправимы.

При  нагреве в соляных ваннах при недостаточном тщательном контроле состава солей возникает  разъедание поверхности в виде точек или ручьёв.

________________________________________________________________________

2) Превращение аустенита в перлит при медленном охлаждении.

12_files/image021.gif

Превращение связано с диффузией углерода, сопровождается полиморфным превращением 12_files/image022.gif, выделением углерода из аустенита в виде цементита, разрастанием образовавшегося цементита.

В зависимости от степени переохлаждения различают три области превращения. Вначале, с увеличением переохлаждения скорость превращения возрастает, а затем убывает. При температуре 727 oС и ниже 200o С скорость равна нулю. При температуре 200o С равна нулю скорость диффузии углерода.

Закономерности превращения.

Образцы нагревают до температуры, при которой структура состоит из однородного аустенита (7700 С). Затем переносят в термостаты с заданной температурой (интервал 25 – 500 С). Превращение аустенита можно легко обнаружить с помощью наблюдений за изменением магнитных характеристик, так как аустенит парамагнитен, а феррит и цементит обладают магнитными свойствами.

Получают серию кинетических кривых (рис. 12.5 а), которые показывают количество образовавшегося перлита в зависимости от времени, прошедшего с начала превращения.

12_files/image023.gif

Рис. 12.5. Кинетические кривые превращения аустенита при охлаждении (а); диаграмма изотермического превращения аустенита (б)

Вначале наблюдается инкубационный подготовительный период, время, в течение которого сохраняется переохлажденный аустенит. Превращение протекает с различной скоростью и достигает максимума при образовании 50 % продуктов распада.

Затем скорость начинает уменьшаться и постепенно затухает. С увеличением степени переохлаждения устойчивость аустенита уменьшается, а затем увеличивается.

Горизонтальная линия Мн. показывает температуру начала бездиффузного мартенситного превращения. Такие диаграммы называются диаграммами изотермического превращения аустенита (рис. 12.5 б).

При малых степенях переохлаждения, в области температур 727…550o С, сущность превращения заключается в том, что в результате превращения аустенита образуется механическая смесь феррита и цементита, состав которой отличается от состава исходного аустенита. Аустенит содержит 0,8 % углерода, а образующиеся фазы: феррит –0,02 %, цементит – 6,67 % углерода.

Время устойчивости аустенита и скорость его превращения зависят от степени переохлаждения.

Максимальная скорость превращения соответствует переохлаждению ниже температуры 12_files/image024.gifна 150…200o С, то есть соответствует минимальной устойчивости аустенита.

Механизм превращения представлен на рис. 12.6.

12_files/image025.gif

Рис. 12.6. Механизм превращения аустенита в перлит

При образовании перлита из аустенита ведущей фазой является цементит. Зарождение центров кристаллизации цементита облегчено на границе аустенитных зерен. Образовавшаяся пластинка цементита растет, удлиняется и обедняет соседние области углеродом. Рядом с ней образуются пластинки феррита. Эти пластинки растут как по толщине, так и по длине. Рост образовавшихся колоний перлита продолжается до столкновения с кристаллами перлита, растущими из других центров.

Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходит процесс его распада.

Толщина соседних пластинок феррита и цементита определяет дисперсность структуры и обозначается 12_files/image026.gif. Она зависит от температуры превращения. В зависимости от дисперсности продукты распада имеют различное название.

12_files/image027.gifмм – перлит.

Образуется при переохлаждении до температуры Т = 650…700 oС, или при скорости охлаждения Vохл = 30…60 oС/ч. Твердость составляет 180…250 НВ.

12_files/image028.gifмм – сорбит

Образуется при переохлаждении до температуры Т = 600…650 oС, или при скорости охлаждения Vохл = 60 oС/с. Твердость составляет 250…350 НВ. Структура характеризуется высоким пределом упругости, достаточной вязкостью и прочностью.

12_files/image029.gifмм – троостит

Образуется при переохлаждении до температуры Т = 550…600 oС, или при скорости охлаждения Vохл = 150 oС/с. Твердость составляет 350…450 НВ. Структура характеризуется высоким пределом упругости, малой вязкостью и пластичностью.

Твердость ферритно-цементитной смеси прямо пропорциональна площади поверхности раздела между ферритом и цементитом.

Промежуточное превращение

При температуре ниже 550 oС самодиффузия атомов железа практически не происходит, а атомы углерода обладают достаточной подвижностью.

Механизм превращения состоит в том, что внутри аустенита происходит перераспределение атомов углерода и участки аустенита, обогащенные углеродом превращаются в цементит.

Превращение обедненного углеродом аустенита в феррит происходит по сдвиговому механизму, путем возникновения и роста зародышей феррита. Образующиеся при этом кристаллы имеют игольчатую форму.

Такая структура, состоящая из цементита и феррита, называется бейнитом. Особенностью является повышенное содержание углерода в феррите (0.1…0.2 %).

Дисперсность кристаллов феррита и цементита зависят от температуры превращения.

При температуре 12_files/image031.gifмм – верхний бейнит. Структура характеризуется недостаточной прочностью, при низких относительном удлинении (12_files/image032.gif) и ударной вязкости (12_files/image033.gif).

При температуре 300oС – 12_files/image034.gif– нижний бейнит. Структура характеризуется высокой прочностью в сочетании с пластичностью и вязкостью.

 Превращение аустенита в мартенсит при высоких скоростях охлаждения

Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Сопровождается полиморфным превращением 13_files/image001.gifв 13_files/image002.gif

При охлаждении стали со скоростью, большей критической (V > Vк), превращение начинается при температуре начала мартенситного превращения (Мн) и заканчивается при температуре окончания мартенситного превращения (Мк). В результате такого превращения аустенита образуется продукт закалки – мартенсит.

Минимальная скорость охлаждения Vк, при которой весь аустенит переохлаждается до температуры т.Мн и превращается, называется критической скоростью закалки.

Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке 13_files/image003.gifи располагается либо в цент рах тетраэдров, либо в середине длинных ребер (рис. 13.1).

Мартенсит – пересыщенный твердый раствор внедрения углерода в 13_files/image004.gif.

При образовании мартенсита кубическая решетка 13_files/image005.gifсильно искажается, превращаясь в тетрагональную (рис. 13.1 а). Искажение решетки характеризуется степенью тетрагональности: с/а > 1. Степень тетрагональности прямопролорциональна содержанию углерода в стали (рис. 13.1 б).

13_files/image006.gif

Рис. 13 1. Кристаллическая решетка мартенсита (а); влияние содержания углерода на параметры а и с решетки мартенсита (б)

Рассмотрим заданную ферму, загруженную единичным грузом

Расчет фермы козлового крана Ферма козлового крана представляют собой стержни, имеющие прямолинейную, ломанную или криволинейную ось.

Влияние пластической деформации на структуру и свойства металла: наклеп С увеличением степени деформации характеристики пластичности (относительное удлинение, относительное сужение) и вязкости (ударная вязкость) уменьшаются, а прочностные характеристики (предел упругости, предел текучести, предел прочности) и твердость увеличиваются

Механизм мартенситного превращения имеет ряд особенностей

Отжиг второго рода предназначен для изменения фазового состава. Температура нагрева и время выдержки обеспечивают нужные структурные превращения. Скорость охлаждения должна быть такой, чтобы успели произойти обратные диффузионные фазовые превращения.

Способы закалки В зависимости от формы изделия, марки стали и нужного комплекса свойств применяют различные способы охлаждения

 Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация.

Методы повышения  конструктивной прочности металла. Термомеханическая обработка стали

Конструкционные материалы. Легированные стали

Конструкционные стали. Классификафия конструкционных сталей

Высокопрочные, пружинные, шарикоподшипниковые, износостойкие и автоматные стали

Стали для режущего инструмента

Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы

Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы. Медь и ее сплавы

Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические


Расчет физико-механических характеристик материала